Ribosomal protein methyltransferases in the yeast *Saccharomyces cerevisiae*: Roles in ribosome biogenesis and translation

Qais Al-Hadid, Jonelle White, Steven Clarke*

Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA

A R T I C L E I N F O

Article history:
Received 13 January 2016
Accepted 17 January 2016
Available online 20 January 2016

Keywords:
Ribosomal protein
Ribosome biogenesis
Translation elongation
Translation fidelity
Aminoacyl-tRNA
Peptidyl transferase

A B S T R A C T

A significant percentage of the methyltransferasome in *Saccharomyces cerevisiae* and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in *S. cerevisiae* were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed –1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in *S. cerevisiae* play important roles in ribosome biogenesis and translation.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Translational components are modified by the addition of methyl groups in all domains of life. These modifications occur on ribosomal RNA (rRNA), transfer RNA (tRNA), messenger RNA (mRNA), translation factors, and ribosomal proteins [1–7]. More than half of the known methyltransferases in the yeast *Saccharomyces cerevisiae* modify these ribosomal components, suggesting that methylation of translational components is important for cellular function [8]. Methylation of the RNA components of the ribosome is important for ribosome synthesis, structure stability, and translational fidelity [3,4,9,10]. Similarly, methylation of elongation and release factors has been demonstrated to be important for translational fidelity and termination efficiency [5,11]. However, the functions of methyltransferases responsible for ribosomal protein methylation are not well characterized and little has been done to uncover their biological activities.

We previously showed that the yeast methyltransferase, Hpm1, plays an important role in ribosome biogenesis and translation [12,13]. Cells deficient in Hpm1 exhibited defects in 60S large ribosomal subunit synthesis and decreased translation elongation fidelity [12,13]. To determine if the nine other known ribosomal protein methyltransferases in *S. cerevisiae* are playing similar roles as Hpm1, we investigated the consequences of depleting each ribosomal protein methyltransferase on ribosome biogenesis and translation. Using a variety of assays, we show that the loss of each of these enzymes results in one or more alterations in ribosome biogenesis (altered levels of ribosomal subunits), resistance to ribosome-binding antibiotics, readthrough of stop codons, amino acid misincorporation, and programmed –1 ribosomal frameshifting (−1 PRF). These results suggest that all the ribosomal protein methyltransferases in *S. cerevisiae* are necessary for ribosome biogenesis and accurate translation elongation or termination.

* Corresponding author. Dept. of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, 607 Charles E. Young Dr. E., Los Angeles, CA 90095-1569, USA.
E-mail address: clarke@mbi.ucla.edu (S. Clarke).

http://dx.doi.org/10.1016/j.bbrc.2016.01.107
0006-291X/© 2016 Elsevier Inc. All rights reserved.
2. Materials and methods

Strains and growth media — All strains used are in the BY4742 background (MATa, his3Δ1; leu2Δ0; lys2Δ0; ura3Δ0) obtained from the Open Biosystems yeast knockout collection (Thermo Scientific). All strains contain a kanamycin resistance marker in place of the open reading frame of each ribosomal protein methyltransferase gene. Yeast strains were grown in 1% yeast extract, 2% peptone, and 2% dextrose (YPD, Difco) or minimal synthetic media; 0.5% ammonium sulfate, and amino acids (BD Biosciences), 0.077% complete supplement mixture without uracil (MP Biomedicals; 114511212), 0.5% ammonium sulfate, and 2% dextrose.

3. Results

3.1. Loss of yeast ribosomal protein methyltransferases results in abnormal ribosomal subunit levels and increased polysomes

In prior work, we showed that the protein histidine methyltransferase, Hpm1, in S. cerevisiae, is needed to promote normal ribosome biogenesis [12]. We sought to determine if loss of other yeast ribosomal protein methyltransferases results in defects in ribosomal subunit levels and/or translation by polysome profile analysis. Lysates were prepared from wild type and each of the ten mutant strains and ribosomal components separated by sucrose density ultracentrifugation. We examined the levels of small (40S) and large (60S) ribosomal subunits, intact ribosomes (80S), and polyribosomes (polysomes) to indicate possible defects in ribosome biogenesis and/or translation. Like Hpm1-deficient cells, loss of Rkm1, Ntm1, Rmt1, or Rmt2 resulted in a decrease of 60S subunits (Fig. 1A). This defect in 60S biogenesis is highlighted by a significant decrease in the free 60S/free 40S subunit ratio in these strains, compared to wild type (Fig. 1B). Ntm1 was previously shown to be important for 60S biogenesis [14]. Loss of Rkm2, Rkm3, Rkm4, Rkm5, or Sfm1 had little or no impact on the levels of ribosomal components, suggesting they are not required for ribosomal subunit synthesis (Fig. 1A, 1B). Little or no change in the polysome/80S ratio was seen for the ten methyltransferase mutants, suggesting no significant change in translational output and cellular proliferation [15,16]. This result is consistent with similar growth of these mutant strains to the wild type strain in the absence of antibiotics on agar plates (Fig. 2) or in liquid medium (Fig. 3).

3.2. Cells deficient in ribosomal protein methyltransferases are resistant to the A-site and E-site ribosome-binding drugs, anisomycin and cycloheximide, respectively on agar plates

Next, we tested if the defects in ribosomal subunit biogenesis and/or the elevated levels of polysomes in the ribosomal protein methyltransferase mutants correlate with altered sensitivities to ribosome-binding drugs. Altered sensitivities to these drugs bind. Drugs that bind to different functional centers of ribosome-binding drugs. Altered sensitivities to these drugs may result in the production of more active firefly luciferase enzymes and as a consequence, greater firefly luciferase luminescence. All
ribosomal protein methyltransferase-deficient strains exhibited significantly higher frequencies of amino acid misincorporation (>2-fold), except for rkm2Δ and ntm1Δ, which had similar levels of misincorporation as wild type (Fig. 4C). This suggests that most ribosomal protein methyltransferases are important for translation elongation fidelity, whereas Rkm2 and Ntm1 are important in translation termination efficiency. Finally, to corroborate that these strains have defects in translation, we measured the frequencies of programmed 1PRF, which has previously been shown to positively correlate with translation elongation defects [23]. To measure 1PRF efficiency, a dual-luciferase reporter vector was used that contained a viral L-A direct 1PRF signal between the Remilla and firefly genes [24]. Firefly luciferase synthesis depends on the 1PRF event as it is out of frame of the Remilla open reading frame. Defects in translation elongation or termination increases the transit times of ribosomes on mRNAs and consequently, increases the probability of a 1PRF event occurring [15,16,25]. Therefore, defects in translation elongation or termination should result in more firefly luciferase production. Loss of each of the ten ribosomal protein methyltransferases resulted in enhanced 1PRF efficiency (Fig. 4D). Notably, loss of Rkm5 or Ntm1 resulted in >2-fold increase in 1PRF efficiency (Fig. 4D). These results suggest that ribosomal protein methyltransferases in S. cerevisiae are important for translation elongation and/or termination fidelity.

4. Discussion

In this study, we showed that most ribosomal protein methyltransferases in S. cerevisiae are playing roles in ribosome biogenesis. These enzymes (except Ntm1) can localize or are predominantly localized in the nucleus [26,27], where the bulk of ribosome assembly takes place [28–30]. This suggests that these methyltransferases (Hpm1, Rkm1, Rmt1, and Rmt2) are likely active participants during the assembly process of the ribosome. Ntm1 may not be actively involved in the assembly process of the ribosome but instead methylation of its ribosomal protein substrate, Rpl12, may be important for ribosomal assembly, as Rpl12 is known to be imported into the nucleus and assemble with pre-ribosomes along with most of the ribosomal proteins [28,30]. Ntm1 may also have unknown substrates whose methylation is important for the assembly process. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed 1 ribosomal
frameshifting demonstrated that all of the ribosomal protein methyltransferases in *S. cerevisiae* are important for translational accuracy. Loss of Ntm1 or Rkm2 resulted in increased readthrough of stop codons but had no major effect on amino acid misincorporation, suggesting that these enzymes are important for translation termination but not necessary for elongation, unlike the other eight enzymes. Importantly, Ntm1 and Rkm2 methylate the same ribosomal substrate, Rpl12, at the N-terminus of the protein [20,31] that is exposed to the cytoplasm and a component of the GTPase-associated center (GAC), which is known to interact with translation factors and couples GTP hydrolysis with translation elongation or termination [32–34]. It is therefore possible that methylation of Rpl12 by Ntm1 and Rkm2 is important for recruitment of release factors to the GAC and/or coupling GTP hydrolysis to translation termination. Moreover, previous work has shown that these two enzymes may be functionally linked as cells deficient in Ntm1 not only lose methylation at the Ntm1 target site (P1) but also at the Rkm2 target site (K3) [31]. The other eight mutant strains all had increased levels of amino acid misincorporation and stop codon suppression, suggesting these enzymes are important for elongation accuracy. The stop codon readthrough phenotype in these cells is likely a consequence of an elongation rather than a termination defect as has previously been reported [22]. It is unclear if these translational fidelity phenotypes are caused by the ribosome biogenesis defects in the methyltransferase mutants. It is possible that aberrant ribosome biogenesis results in ribosomes with altered structures and/or functionality that diminishes fidelity of protein synthesis. Alternatively, these enzymes may be multifunctional with separate roles in ribosome biogenesis and translation and methylation of their ribosomal protein substrates may be

![Fig. 2.](image1) Cells deficient in ribosomal protein methyltransferases show altered sensitivities to the ribosome-targeting drugs anisomycin and cycloheximide in plate assays. Exponentially growing wild type and ribosomal protein methyltransferase knockouts were inoculated overnight in 20 ml of YPD at 30 °C with shaking at 250 rpm at a dilution to ensure a starting OD600nm around 0.5 the following morning. Cells were pelleted by centrifugation for 5 min at 5000 × g and washed three times in sterile water. Cells were resuspended in water to a final OD600nm of 0.5 and serially diluted in 5-fold steps with water. Three μl of each dilution starting at an OD of 0.02 was spotted on YPD agar plates in the presence or absence of anisomycin (10 μg/ml; CalBiochem #176880) and cycloheximide (500 ng/ml; Sigma #C7968). Plates were then incubated for 4 days at 30 °C. Each panel shown is from a single plate of one of two biological replicates.

![Fig. 3.](image2) Cells deficient in ribosomal protein methyltransferases show similar growth rates in liquid culture to wild type cells in the presence or absence of cycloheximide. Exponentially growing wild type and mutant strains were inoculated overnight in 25 ml of YPD at 30 °C with shaking at 250 rpm at a dilution to ensure a starting OD600nm around 0.1 the following morning. At that time, either no drug or cycloheximide (50 ng/ml final concentration) was added and cell growth at 30 °C was determined by the increase in OD600nm at 90 min intervals for 9 h. When needed, 5-fold or 10-fold dilutions were done to insure that the measured OD was below 1. Doubling times were calculated from the slope of a log OD versus time plot. The data shown are from five separate experiments done in duplicate.
Fig. 4. Cells deficient in ribosomal protein methyltransferases have reduced translational fidelity. Translation elongation and termination accuracy were measured in cells lacking each of the ten ribosomal protein methyltransferases. A dual-luciferase reporter assay consisting of a Renilla luciferase gene fused C-terminally to a firefly luciferase gene separated by a linker region was used to measure stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting (−1 PRF), as described previously [12,22,24]. (A) Percent readthrough was calculated by taking the firefly/Renilla luminescence ratio of the UAA-containing vector divided by the same ratio in the respective control. Error bars represent standard deviation. hpm1 was assayed 11 independent times, hpm1 cells were previously reported [13]. (B) Same as in (A) except a UAG stop codon was used. Wild type was assayed for a total of 12 biological replicates, 0.0001 (**), p < 0.001 (**), p < 0.01 (**), p < 0.05 (**), p < 0.1 (**). (C) Percent amino acid misincorporation was calculated by taking the y/Renilla luminescence ratio of the UAA-containing vector divided by the same ratio in the respective control. Error bars represent standard deviation of at least two independent experiments. Data for wild type and hpm1 cells were previously reported [13]. (D) Percent -1 PRF was calculated by taking the firefly/Renilla luminescence ratio of cells containing pJD376 (L-A virus gag-pol frameshift signal) divided by the same ratio of cells containing the no frameshift control (pJD375). Error bars represent standard deviation of at least two independent experiments. Strains were assayed 2–4 independent times as indicated by the number of data points. hpm1 p < 0.01, rkm1 p < 0.006, rkm2 p < 0.03, rkm3 p < 0.03, rkm4 p < 0.004, rmt1 p < 0.0001, rmt2 p < 0.0001, sfm1 p < 0.001, ntm1 p < 0.001, ntm2 p < 0.001, sfm1 p < 0.001. Frameshift vectors were generously provided by Jonathan Dinman at the University of Maryland, MD and described [24]. p < 0.05 (**), p < 0.01 (**), p < 0.001 (**), p < 0.0001 (***)

important for maintaining proper ribosome conformations during the decoding, peptidyl transfer, and translocation steps of elongation. To address this concern, similar analyses need to be done with ribosomes lacking methylation at each of the sites targeted by these ribosomal protein methyltransferases. Also rRNA structure, biochemical, and biophysical characterization of ribosomes isolated from each of these ribosomal protein methyltransferase-deficient strains needs to be done to get a clear understanding as to how or if methylation of ribosomal proteins in *S. cerevisiae* promotes ribosome biogenesis and accurate protein production.

Funding

This work was supported, in whole or in part, by National Institutes of Health Grant GM026020 (to S. G. C.) and an NSF LSAMP Bridge to the Doctorate Fellowship (to J. W.).

Acknowledgment

We would like to thank William Munroe for his help with the polysome profile analysis, Ming Du and David Bedwell for providing the stop codon readthrough and amino acid misincorporation plasmids, and Jonathan Dinman for providing the frameshifting plasmids.

Transparency document

Transparency document related to this article can be found online at http://dx.doi.org/10.1016/j.bbrc.2016.01.107.

References

